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Abstract—Privacy of genomic data has become increasingly
significant as genome sequencing is more readily available for
research. It is imperative to protect genomic data as we use it
for the progression of medicine. In this paper, we propose a new
privacy preserving Fisher’s Exact Test algorithm for genomic
data based on Boneh-Goh-Nissim (BGN) cryptosystem. This is
a novel approach that has yet to be done to the best of our
knowledge. Due to BGN’s homomorphic properties, researchers
can keep data private while calculating the correct test results
without ever decrypting the data itself. We investigate the usage
of the BGN cryptosystem on statistical computations, Fisher’s
Exact Test in particular, analyzing its security, efficiency, and
correctness in the real world of genomic data research. We
implement our BGN-based privacy preserving Fisher’s Exact
Test algorithm and test it extensively using real genomic data
from international genome database. The result shows that our
algorithm is efficient and practical.

I. INTRODUCTION

From the Human Genome Project [17] to the current day,
the Genome Wide Association Study (GWAS) has found
revolutionizing discoveries about the human body. The study
of phenotypes and genotypes has grown rapidly due to the
dramatic decrease in the cost of sequencing genes. This
increase in gene sequencing has pushed for research in many
fields such as personalized medicine, genetic engineering,
epidemiology, etc. Many initiatives, such as Genome Data
Sharing and Personal Genome Project, have been spearheaded
in this revolution [13]. Using genomic data we are able to see
the linkage between genes and their predictions to hereditary
traits. Certain single-nucleotide polymorphisms (SNPs), which
are micro-array sequences, can be common variants of an
attribute. When these SNPs are identified from our genome,
we can determine our susceptibility to certain features. These
discoveries have empowered researchers to study personal-
ized medicine and preventive health care. Meaningful genetic
analysis is critically valuable for the progression of medical
advancements.

Conversely, the exposure of one’s genomic data can result
in high privacy-risks. An individual’s genome can imply
sensitive and personal information such as the existence or the
probability of developing a certain disease. Exposure of this
information to an unauthorized party is to the disadvantage of
the person concerned and sometimes may be life-threatening
[1] [17].
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On the other hand, protecting genomic data privacy has
its unique challenges as this data has distinct features that
make this a more sensitive and dire issue. First of all, genetic
data is permanent and identifiable to a specific individual,
thus any risk allows a lifetime of vulnerability for the person
exposed. Therefore, cryptographic approaches in general are
facing the challenge from brute force attackers with longer
time to possibly crack the ciphertext. Secondly, our genome
is linked to relatives, causing domino effect of risk to them
as well. That is, one’s blood relatives’ genome sequence
information can also be inferred even though their data is
not directly exposed. The association and linkage among
genome data from different people thus need to be considered
when addressing the privacy issue using a non-cryptographic
approach [1]. Lastly, traditional anonymization methods that
remove personally identifiable information are not as effective
either, since genome itself is the ultimate identifier. In short, as
the genomic data becomes more easily processed, it becomes
more important and yet challenging to keep this data private
for individuals and institutions [1].

In this work, we propose a new privacy preserving algorithm
to perform statistical analysis (Fisher Exact Test in particular)
on individuals’ genome data in a cloud. Due to the huge
volume of genome data, the cloud is a practical platform
to store and analyze such data. However, although the cloud
platform promises easy access for genomic data sharing, it
cannot always be assumed secure and trustworthy. As a matter
of fact, the Cloud Security Alliance has highlighted several
security vulnerabilities including malicious insiders [3]. As to
defend against possible adversarial penetration into the cloud,
our algorithm only stores ciphertext of genome data in the
cloud to ensure data protection. In this paper, we assume that
the cloud service is semi-honest.

Fisher’s Exact Test is a classic statistical test in enrichment
analysis of genes, and often used as a cross-validation scheme
to ensure the statistically stability in genetic analysis. It has
been widely applied in various biomedical research work,
such as detecting differentially expressed genes [5]. Providing
a privacy preserving Fisher’s Exact Test will enable more
individuals to participate in this biomedical research, and
protect their personal privacy at the same time.

Our goal in this paper is to design a cryptographic algorithm
to enable individual users to encrypt their genomic data, and
send the ciphertext to the cloud. On the cloud, Fisher’s Exact
Test can be correctly performed on the ciphertexts. Utilizing
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this method, nothing about individual genome data except the
Fisher’s Exact Test results can be learned. Popular solutions
are to leverage the homomorphism of some cryptographic
schemes such as Paillier or El Gamal [20], so that some
properties of the plaintext genome can be preserved in the ci-
phertext space. However, established cryptographic algorithms
like Paillier El Gamal usually require large key sizes (e.g.,
1024 to 2048 bits) to ensure a certain level of security, and
thus the time to encrypt and decrypt is significant, especially
on the user side. The huge volume of genomic data makes this
problem even harder to solve. Therefore, we propose to use
Boneh-Goh-Nissim (BGN) cryptosystem, which is somewhat-
fully homomorphic, both additive and multiplicative. More im-
portantly, BGN is a pairing-based cryptosystem using pairings
from elliptic curves. Therefore, compared with Paillier and El
Gamal, BGN has the advantage of efficiency. In addition, when
computing genomic data which mostly consists of nucleotides:
A, C, G, T, the small size of message space makes BGN a
good fit.

Our contribution of this paper is summarized as follows:
• To the best of our knowledge, this is the first work to

use BGN to provide a privacy preserving algorithm on
genomic data.

• We design a new algorithm to enable a private Fisher’s
Exact Test on the ciphertext of users’ genomic data in
cloud. The algorithm is correct and secure in the semi-
honest security model.

• We implement our BGN-based privacy preserving
Fisher’s Exact Test algorithm on top of the Pairing-
Based Cryptography (PBC) library and test it extensively
using real genomic data from the international genome
database. The results show that our algorithm is effective
and efficient.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III covers the preliminaries
of this research, which will serve as a reminder on some
technical terms. Section IV introduces the system model and
security model of our privacy preserving Fisher’s Exact test
on genomic data. Section V presents the detailed algorithm
built for this system, and the analysis of security, efficiency
and correctness of the algorithm. Lastly, in our Section VI, we
will discuss the system implementation and experiment results
on efficiency.

II. RELATED WORK

The issue of privacy in genomic data has been a problem
since the Human Genome Project commenced in 2003 [1].
Many researchers have attempted to tackle secure multi-party
computation on genomic data with different approaches and
solutions. As Akgun et al. notes in [1], the security in genomic
data is not up to par with the increasing genomic testing
activities. He warns that despite such health and medical
advances, there is still a lack in privacy measures. Additionally,
due to the vast size of genomic data as a whole, researchers
are concerned with throughput. Computation must be practical
for real-world use without neglecting privacy [17]. According

to Naveed et. al, we need to push forward stronger privacy-
preserving mechanisms to ensure security for future genome
uses.

Homomorphic encryption on the cloud has been extensively
studied. For example, Tebaa et al, [20] noted that using homo-
morphic encryption like Paillier, any data could be encrypted
before sending to the cloud and allowing for the encrypted data
to be computed without the need to decrypt. Wu [23] asserts
that homomorphic encryption in the cloud as the “Encryption’s
Holy Grail” since Gentry et. al [6] produced a bootstrapping
method that can transform a some-what homomorphic cryp-
tosystem to a fully homomorphic cryptosystem.

Due to genomic privacy concerns, researchers explored
homomorphic encryption on genomic data for secure mul-
tiparty computation on the cloud. In 2016, Lauter et al
[11] proposed ways of providing meaningful computations
on statistical algorithms: Chi-Squared Test, Linkage Dise-
quilibrium, Estimation Maximization, and Cochran-Armitage
Test for Trend with Lopez-Alt and Naehrigs homomorphic
cryptosystem. These statistical computations are calculated
using counts of genotypes as the frequency of the genotypes.
With many ciphertext of the genomic data, cloud service
provider computes the result and returns it as a ciphertext
to the researcher to decrypt. This sets the groundwork to all
homomorphic encryption computations on genomic data. Also
in 2016, Jankly [8] investigated GPU hardware acceleration for
genomic data processing, which greatly improves processing
time for homomorphic cryptosystems due to the massively par-
allel computing architecture. The research investigated GPU
acceleration of the Paillier cryptosystem on genomic data sets,
and some of the work has been utilized in this paper.

Since Lauter et al’s work, more research has been done
in homomorphically encrypted genomic data in the cloud.
Hasan et al. [10] proposed a new way for secure sharing
and computation on genomic data using a secure count query
with the Paillier cryptosystem. From the genomic sequences,
this method allowed them to select a count of a particular
SNP sequence. Another method developed for statistical com-
putation on genomic data was proposed by Qiu et al [21]
called the Frequent Itemset Mining method which uses the
Paillier cryptosystem. In this implementation, a miner mines
the frequency of the itemsets that are encrypted. Recently in
2018, Sadat et al [18] developed SAFETY, which is a new
method that uses homomorphic encryption with Intels SGX
for much faster computation speed than previous proposed
systems. To the best of our knowledge, we are the first to
implement a BGN cryptosystem for genomic data on the
Fishers Exact Test.

III. PRELIMINARIES

This section highlights the technical preliminaries needed
to know for further discussion of this paper.

A. Homomorphic Encryption

Homomorphic Encryption allows computations on en-
crypted data without ever needing to decrypt the data. This
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makes homomorphic encryption a viable solution for securing
data and keeping some properties of the plaintext data. Ho-
momorphic cryptosystems have the ability to operate addition
and/or multiplication on encrypted data. A cryptosystem is
deemed multiplicatively homomorphic: if given two cipher-
texts Encrypt(Pk, a) and Encrypt(Pk, b), the product of
the two ciphertexts equals Encrypt(Pk, a ∗ b). Similarly,
it is additively homomorphic if there is a way to calculate
Encrypt(Pk, a + b) based on the ciphertexts of a and b,
without decrypting any message [2]. A cryptosystem is called
fully homomorphic if it satisfies both at the same time.

B. Boneh-Goh-Nissim Scheme

Many homomorphic cryptosystems can only have either
additive or multiplicative homomorphism. Boneh-Goh-Nissim
cryptosystem, however, is a Somewhat Homomorphic Encryp-
tion (SWHE) scheme that renders additive homomorphism for
an arbitrary amount of additions and multiplicative homomor-
phism with one multiplication [2]. This is possible since BGN
is a pairing-based cryptosystem, where pairings are taken from
elliptic curve.

In BGN scheme, G1, G2 fields are both input groups and
GT is the output group, all of prime order p. Let P ∈ G1,
Q ∈ G2 be generators of G1 and G2, respectively. Our
implementation uses Fq field: y2 = x3 + x which provides
type A pairings for q = 3 mod 4. The fields: G1, G2, GT are
all in prime order and are cyclic groups where a pairing in this
elliptic curve is e : G1 ∗G2 → GT . For the pairing, bilinearity
holds:

∀a, b ∈ Z∗p : e(P a, Qb) = e(P,Q)ab.

Given the public key PK = {N,G,G1, e, g, h}, to encrypt
a message m, pick a random r from {1, 2, ..., N}, and compute
C = gmhr. To decrypt a ciphertext C using the secret key
SK = q1, it suffices to compute the logarithm of Cq1 , since
Cq1 = (gmhr)q1 = (gq1)m.

BGN is additively homomorphic. Given the two ciphertexts
C1, C2, for cleartexts m1 and m2 respectively, the public key
h element and r, a randomly generated number less than N ,
the equation below shows the way to calculate the a + b’s
ciphertext using C1 and C2.

C1C2h
r = (gm1 ∗ hr1) ∗ (gm2 ∗ hr2) ∗ hr = gm1+m2hr1+r2+r

(1)
The multiplicative homomorphism of BGN is based on

bilinear map. Let g1 = e(g, g) and h1 = e(g, h). g1 is of
order N and h1 is of order q1. We will have an unknown
α ∈ Z such that: h = gαq2 . Using these formulas we can
calculate for the two ciphertexts:

C = e(C1, C2)hr1 = e(gm1hr1 , gm2hr2) ∗ hr1
It can be derived that

C = e(g, g)m1m2 ∗ hr+m1r2+m2r1+αq2r1r2
1

Thus, we can see that the BGN is both additively homo-
morphic and has the ability to operate one multiplication on
ciphertext using its bilinear map [2] [25].

The number of operations on BGN can addi-
tionally be enhanced with bootstrapping, to add a
Rencrypt(Encrypt(Pk, y), sk) function on top of the noise-
filled ciphertext, which then will lessen the noise from the
operations done on the ciphertext, along with adding one more
multiplication operation [6] [23]. Though computationally
expensive, adding the bootstrapping functionality transforms
the homomorphic scheme into a Fully Homomorphic
Encryption System (FHE).

The BGN Cryptosystem is only able to work on a limited
size of message space, due to the discrete logarithm needed
with decryption. This constraint poses no issue for genomic
data since we will not need to return a large message when
computing genomic data which will be consisting of the
nucleotides: A, C, G, T.

C. Statistical Tool: Fisher’s Exact Test
Studying genomic data can show the gene variants and

its correlation to specific traits. In this paper, we focus on
providing the privacy preserving Fisher’s Exact Test on ge-
nomic data. This test is used with two nominal variables that
are statistically significant through P-value. In short, Fisher’s
Exact Test will test if a percentage of a variable provides
different values of the other variable [16].

According to Fisher’s Exact Test, given a 2 x 2 contingency
table as shown in Table I, the probability of obtaining any such
set of values is following the hypergeometric distribution.

TABLE I
2 X 2 CONTINGENCY TABLE SAMPLE

Category 1 Category 2 Row Total
Group 1 a b a+b
Group 2 c d c+d

Column Total a+c b+d a+b+c+d=N

p =
((a+ b)!(c+ d)!(a+ c)!(b+ d)!)

a!b!c!d!N !
(2)

As one can see, Fishers Exact provides the exact value of
probability. Fisher’s Exact has generally been avoided due to
its large computational task. For smaller populations assuming
independence, this equation must be used to avoid incorrect
calculations.

The difference between using the Chi-Squared Test and
Fisher’s Exact, is that the Chi-Squared Test is an approxima-
tion that cannot be used in smaller sample sizes [14]. GWAS
researchers need to use Fishers Exact due to the importance
of finding the exact probability value. Fishers Exact is used in
genetics for populations less than 20, or when any cell is in
the 2 x 2 contingency table is less than 5.

Overall, Fisher’s Exact Test is used often for nominal
sample sizes to provide the exact probability value, instead
of an approximation. As suggested in Wang et. al [22], it
is important to use Fisher’s Exact Test as a cross-validation
scheme to ensure the statistically stability in genetic analysis.
We will show that this significant stability can be provided in
a privacy preserving way on top of BGN.
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IV. SYSTEM OVERVIEW

In this paper, we propose a system architecture that calls
for all genomic data to be encrypted before storing it inside
the cloud platform. Researchers and scientists can then query
the cloud for statistical computations and decrypt the result of
these computations with the secret key. Our system architec-
ture enables genomic data providers to send cryptographically
secure genomic data into the cloud service platform and
allows for the researchers to query statistical computation to
receive insightful results. Our system consists of: researchers,
cloud service platform, genomic data providers, and certificate
authority.

A. System Model
In this subsection we will discuss the parties in the system

model and our assumptions. The parties involved in our system
architecture include the following:
• Genomic Data Providers: this party involves individuals

or entities who have data to be stored in a cloud service
provider. They have an interest in keeping the genomic
data secure and protected from outsiders in order to
follow certain privacy guidelines. These entities can be
hospitals, research institutions or individual genomic data
owners.

• Authorized Researchers: this party involves researchers
who want to query the cloud for mulit-party computation.
Their goal is to use the encrypted data to query and learn
from it. They send their query to the cloud for results.

• Cloud Service Platform (CSP): the CSP is used to store
and compute over the ciphertext. It contains the collective
storage of the protected data. It also performs queries to
compute over the ciphertext and return the appropriate
statistical result.

• Certificate Authority (CA): the Certificate Authority is an
entity that generates, distributes and manages the keys
of the cryptosystem. It assigns the associated secret and
public keys for encryption and decryption of the genomic
data. The public key pairs of legitimate users of the
system for authentication purposes are also maintained
by the CA.

The system overview is described as shown in Figure 1.
Initially, the keys are assigned by Certificate Authority. They
provide genomic data providers a public key to encrypt and
the researchers the corresponding secret key to decrypt the
Fisher’s Exact result. Overall, the Certificate Authority will
arrange the system’s key management throughout the process.

Genomic data providers encrypt their data with the public
key and send their data to the public cloud service plat-
form. CSP stores all encrypted data from data providers and
performs the query on encrypted data as requested by the
Authorized Researchers. Authorized Researchers are allowed
to query the CSP for the computations of statistical functions
like Fisher’s Exact Test. After the computation result as a
ciphertext is returned to the Authorized Researcher, he can
decrypt the result using secret key. This similar structure have
been adopted by other works [10] [11] [18] [20] [21].

Fig. 1. System Architecture

The main body of the privacy preserving Fisher’s Exact
Test algorithm that we will present in Section V is executed
on CSP. Other statistical functions can also be implemented
following the similar system architecture. Multiple genomic
data providers and researchers to store in and query the
cloud for meaningful computation in our system architecture
are allowed. This system can be used for collective research
among many facilities without sacrificing privacy and secrecy.

B. Threat Model

In our system, we assume that all parties, i.e., the cloud
service platform, certificate authority, authorized researchers
and genomic data providers are all honest but curious, who will
honestly follow the protocol but try to discover others’ private
data as much as possible. The parties do not fully trust each
other. Genomic data providers do not disclose private data to
CSP or the researchers directly. The cloud is not fully trusted,
in that CSP can not learn the private data from the procedure
of executing the privacy preserving Fisher’s Exact Test and
from the encrypted intermediate results. Researchers in this
system can only receive the ciphertext of the query’s result.
They are only able to decrypt the result with the associated
secret key. The encrypted genomic data stored in cloud is not
accessible to them.

V. PRIVACY PRESERVING FISHER-EXACT TEST ON
GENOMIC DATA

In this section, we will present the privacy preserving
Fisher’s Exact Test algorithm in the cloud system. We will also
provide analysis of its security, correctness, and efficiency.

A. Algorithm Design

The Fisher’s Exact Test we are introducing in this section is
based on a 2 x 2 contingency table, for clarity of presentation.
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Please note that our privacy preserving algorithm can be easily
extended to be applied to Fisher’s Exact Tests with a mxn
contingency table in general.

In the algorithm design, the first challenge is to convert
the genomic data, i.e., nucleotides A, C, G, T, to the integer
space so that the BGN cryptosystem defined on cyclic groups
can be applied. We solve this challenge by encypting the
genomic data on the data providers side, which is tailored to
the Fisher’s Exact Test. Specifically, we encode the relevant
genomic information into a quadruple for each genomic data
provider i: (x1i , x

2
i , y

1
i , y

2
i ). To determine the values in the

quadruple, particular sections of the genome are scanned to
consider whether this genome belongs to group 1 or group 2,
category 1 or category 2. If it belongs to group 1, category 2,
for example, then (x1i = 0, x2i = 1, y1i = 0, y2i = 0). In words,
x corresponds to group 1, and y corresponds to group 2. Each
superscript is corresponding to the category.

After the genomic data is encoded, we can run our privacy
preserving Fisher’s Exact Test algorithm as shown in Algo-
rithm 1. In particular, each genomic data provider first encrypts
the quadruple using BGN public key. The 4 ciphertexts will
look random to other parties, even though the plaintext is
either 0 or 1, due to the probabilistic property of BGN. After
data providers send ciphertexts to the CSP. CSP calculate the
product of all first components’ ciphertexts in the quadruple
collected, and adds another round of re-randomization by mul-
tiplying hr

1

. Similar calculations are conducted on the other
three components in the quadruple, rendering four messages
in ciphertext space. After receiving these four messages from
CSP, the researcher using BGN secret key decrypts them, and
calculates the final Fisher’s Exact Test result as shown in line
7 and 8.

B. Security Analysis

We will provide a brief security analysis of our privacy
preserving Fisher’s Exact Test against semi-honest CSP and
authorized researchers. In Algorithm 1, the messages that
CSP receives are the encrypted quadruples from genomic data
privacy. CSP cannot learn the plaintext of any component,
i.e., whether any provider belongs to any group or category,
due to the security of BGN which is based on the difficulty
of subgroup decision problem. The calculations on CSP do
not provide more information about plaintexts than what the
messages received render. For the researcher who receives
4 messages in the ciphertext space, all she can learn after
decrypting the message is the statistics, i.e., the total number
of samples belong to each group and category. No individual
genomic data provider’s group or category information can be
revealed. Overall, all parties cannot learn anything other than
what are sent to them and the output of the algorithm, under
the semi-honest model.

C. Correctness Analysis

Based on the encoding method described in Section V-
A, we know that

∑n
i=1 x

1
i equals the number of samples in

total which fall in group 1 and category 1, i.e., the a in the

Algorithm 1 Privacy Preserving Fisher-Exact Test Scheme on
Genomic Data Using a 2 x 2 Contingency Table

INPUT: Each genomic data provider i holds his encoded
genomic data (x1i , x

2
i , y

1
i , y

2
i ), the public key of BGN:

PK = {N,G,G1, e, g, h}. The authorized researcher
holds the secret key of BGN: SK
OUTPUT: Authorized researcher obtains Fisher’s Exact
Test Result p on a set genomic data from providers
{1, 2, ..., n}.

1: repeat
2: Genomic data provider i encrypts genomic data using

BGN, and obtain 4 ciphertexts E(x1i , PK), E(x2i , PK),
E(y1i , PK), and E(y2i , PK).

3: Provider i sends the 4 ciphertext to the cloud service
platform in order.

4: until all providers in {1, 2, 3, ..., n} has finished encryp-
tion and ciphertext transmission.

5: Cloud service platform calculates the following, where
r1, r2, r3, r4 are positive random numbers less than N .
Πn
i=1E(x1i , PK) ∗ hr1 , Πn

i=1E(x2i , PK) ∗ hr2 ,
Πn
i=1E(y1i , PK) ∗ hr3 , Πn

i=1E(y2i , PK) ∗ hr4 .
6: The cloud service platform returns the 4 products in

ciphertext to the researcher.
7: The researcher calculate the following:
a′ = D(Πn

i=1E(x1i , PK) ∗ hr1 , SK),
b′ = D(Πn

i=1E(x2i , PK) ∗ hr2 , SK),
c′ = D(Πn

i=1E(y1i , PK) ∗ hr3 , SK),
d′ = D(Πn

i=1E(y2i , PK) ∗ hr4 , SK).
8: The researcher calculates p according to Equation (2).

contingency table as shown Table I. If we can show that a′

in line 7 equals
∑n
i=1 x

1
i , then it means a = a′, the same

for b, c, d as well, and thus the correctness of Algorithm 1 is
verified. In fact, due the additively homomorphic property of
BGN (as shown in Equation (1)), we have

a′ = D(Πn
i=1E(x1i , PK) ∗ hr

1

, SK)

= D(E(

n∑
i=1

x1i , PK), SK)

=

n∑
i=1

x1i = a

D. Efficiency Analysis

We analyze the efficiency of Algorithm 1 in terms of
computation cost and communication cost. We denote the time
cost to conduct one multiplication in group G as M, and the
time cost for one exponentiation in group G as EXP.

For one encryption operation in BGN, it has two expo-
nentiation and 1 multiplication. Therefore, each genomic data
provider needs 4 ∗ (2M + EXP) computation time to execute
Algorithm 1 (line 2). It takes CSP 4((n + 1)M + EXP)
computation time to perform line 5 in the algorithm. The
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authorized researcher mainly needs four BGN decryption time
to complete Algorithm 1.

The message transmissions in Algorithm 1 include 4 cipher-
texts from each genomic data provider to CSP, and 4 cipher-
texts from CSP to the researcher. Each ciphertext message is
equal to the length of N . As we can see our algorithm is very
efficient both in computation cost and communication cost.

VI. IMPLEMENTATION AND EVALUATION

In this section, we will discuss the implementation issues
of the system, and evaluate our algorithm through extensive
tests.

A. Implementation Details
We first implemented the BGN cryptosystem in C/C++

programming language. Using this cryptosystem, we will be
testing the Fisher’s Exact Test in terms of the time efficiency
and usability of the system for genomic data.

We used the GMP [7] and PBC library [15] in the imple-
mentation The GMP library, which stands for GNU Multi-
Precision Library, allows for big number integers to be used
specific for cryptosystems such as BGN. Then we use the
Pairing Based Cryptography (PBC) library for the BGN cryp-
tosystem since BGN is a pairing based cryptosystem. We also
use Libsodium library [2] [12] [19], with the Mersenne Twister
Algorithm to produce random numbers.

This implementation uses polynomials to represent the
message and the encrypted message. Polynomials are created
using mpf t, GMP big floating numbers. All unencrypted
polynomials are members of the struct Plaintext with int64 t
as the coefficients. All encrypted polynomials are members
of the struct Ciphertext with element t, which is a PBC data
type storing groups, rings, and fields, as the coefficients. To
decode the polynomial back into an integer, we can use the
String(plaintext) function. We implemented Horner’s method
[19] to evaluate polynomials in the String function. Horner’s
method runs in O(n) time where n is the number of polyno-
mials.

Table II shows the implementation of BGN key generation,
encryption and decryption procedures. The key generation
function NewKeyGen produces a Publickey and a Secertkey.
The NewKeyGen function takes in 8 parameters: key bits, mes-
sage space, base, floating point base, floating point precision,
Publickey, and Secretkey. Key bits is the number of bits that
the program will use to generate p and q. We choose 3 as the
polynomial base. A polynomial in base 3 can represent big
integers with small numbers. Floating point base is the same
as base and floating point precision is the floating point we’ll
be representing up to. Parameter ”deterministic” makes the
homomorphic operations deterministic or non-deterministic.

Inside the decrypt function we compute the discrete log-
arithm by iterating over all possible values until ct is equal
to ctsk.Key . This process can be slow since this is a brute
force approach. We would like to note that there are faster
methods to compute the discrete logarithm problem such as
probabilistic algorithms like Pollard’s Rho or deterministic
algorithms like Baby-Step Giant-Step [29].

TABLE II
BGN KEY GENERATION, ENC. AND DEC. IMPLEMENTATION

Key Generation: NewKeyGen(keybits, base, floatbase, floatPrec, de-
terministic, pk, sk)
Input: (keybits, base, floatbase, floatPrec) ∈ Z deterministic ∈ [0, 1]
Compute n = p×q where p, q ∈ P
Choose cyclic group G of order n then
Set pairing← G x G → G1

Choose g, u ∈ G
Set h ← uq

Output: pk ∈ PublicKey, sk ∈ SecretKey
pk ← (pairing, g, u, h, n, base, floatbase, floatPrec, deterministic)
sk ← (p, base)

Encryption: Encrypt(pt,pk)
Input: pt ∈ Plaintext pk ∈ PublicKey
Choose r ∈ ZN
Compute C ← (gpt.Coefficients[i]) × (hr)
Output: C ∈ Ciphertext
C ← (encryptedCoefficients, degree, scalebase, deterministic)

Decryption: Decrypt(C, pk, sk)
Input: C ∈ Ciphertext pk ∈ PublicKey sk ∈ SecretKey
Compute Csecret ← (encryptedCoefficents[i:size])p

where p ∈ SecretKey
Compute Gsecret ← gp where g ∈ Publickey
Find Gsecreti ≡ Csecret where i ∈ Z
Output: i ∈ Z

B. Experiment Setup

All experiments were conducted on one machine with Intel
(R) Xeon (R) CPU E5-2630 v3 @ 2.40GHz processors (32
cores) with 168GB of RAM, running Ubuntu 16.04 LTS. We
will validate the effectiveness and efficiency of our algorithm
using genomic datasets from InternationalGenome.com [28].
There are varieties in the genomic data files from varieties like:
sex, population of the individual, and different data collections.
For this research, we used low coverage WGS files in the
Genome Reference Consortium Human Build 3 (GRCh38)
data collection [28]. We use a utility software for manipulating
genetic sequence alignments, i.e., SAMtools [30] to convert
genomic data files to the .sam format. We also have developed
a parser to process the .sam files into the codes that our
algorithm can recognize.

To test the efficiency of our algorithm, we plan three sets
of experiments with different variables as follows.

• Different Key Bits
• Different Prime Numbers of Message Space
• Different PolyBases

C. Evaluation Results

This subsection will present the results from the experiments
we have performed. In particular we evaluate the efficiency of
three components in our algorithm: key generation, encryption,
and decryption. We will examine the suitable parameters of
BGN for Fisher’s Exact Test on genomic data and provide
recommendations based on the experiment results. More ex-
periments, for example, on the communication overhead, are
planned for future work.
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Fig. 2. Time of Key Generation and Decryption Based on Different Key
Lengths

TABLE III
EFFICIENCY OF ENCRYPTION AND DECRYPTION WITH VARIOUS KEY

SIZES

KeyBits EncPerSec DecPerSec

32 753 331
64 524 204

128 281 80
256 97 26
512 24 7

1) Varying Key Size: First, we test the times for New Key
Generation, Encryption, and Decryption functions for different
key sizes from 32 to 2048 bits, with number of Sequences 20,
Polybase 3 and Message Space 1021.

In Figure 2, we see the results from our experiment on key
generation time and decryption time. Table III shows the time
efficiency of encryption and decryption in terms of the number
of times of executions per second.

As one can see, there is exponential relationship between
the size of the key and the computation time showing a rough
estimate of O(2n) for Key Generation, Encryption, and De-
cryption Functions. However, with 512 bits key, BGN scheme
is still fast. This is due to the Elliptic Curve Cryptography
used to generate the BGN key, which makes generation much
faster than other methods such as RSA [31]. Additionally, in
Elliptic Curve Cryptography (ECC) having smaller key bits
will still ensure the same level of higher security. For example,
having an ECC key size of 283 bits is equivalent to an RSA
security key of 3072 bits. Consequently, just having a 283 bits
makes the crytosystem very secure [31]. Seeing that this Key
Generation is much faster for BGN than for Paillier we can say
that this cryptosystem is additionally useful for genomic data
providers who need to encrypt large amounts of data quickly.
This means in order to have a practical computation time for
this program, we should keep key bit size as 256 or lower.

2) Varying Polybases: Second, we look at how different
polybases can change computation time.

According to Dowlin et. al, the odd bases are preferred due
to space efficiency because with an odd base, we are able

Fig. 3. Time of Key Generation and Decryption based on PolyBases

TABLE IV
ENCRYPTION TIME WITH DIFFERENT POLYBASES

Polybase Encryption(Seconds)

2 16.737
3 22.556

to have signed coefficients to allow for encodings of such
polynomials as: p(X) = X3 − X + 1 for encoding number
25 [32]. Along with that higher polybases provide shorter
polynomials with larger coefficients. Therefore, we wanted to
investigate whether or not the changing polybases will make
a big difference in time efficiency in general for our Fisher’s
Algorithm with BGN encryption and decryption.

Our results are plotted in Figure 3 and Table IV to depict dif-
fering time computations for the polybases. Looking at these
results and keeping space efficiency in mind, we can see that
odd polybases generally have a slightly higher computation
time, but will pay off if space is an issue. Thus, odd bases more
space efficient and will come in handy for larger messages.

3) Varying Message Space: Lastly, in our experiments test-
ing BGN Parameters, we look at whether or not message space
in BGN makes a difference in our implemented Fisher’s Exact
Algorithm. We run these experiments to further understand the
true limitations with the BGN message space and how this can
affect our genomic data result.

From Figure 4 and Table V, we can see that message
space does not affect computation in either Key Generation

TABLE V
ENCRYPTION TIME WITH VARIOUS MESSAGE SPACE SIZES

MessageSpace Encryption(Seconds)

1021 22.101
2003 22.269
4001 22.201
8009 22.471

10 007 22.596
100 003 22.861

10 000 019 23.052
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Fig. 4. Time of Key Generation and Decryption based on Different Sizes of
Message Space

or Encryption, but will grow exponentially in decrypting
messages larger than 10,000.

VII. CONCLUSION

This paper explores the usage and practicality of homomor-
phic encryption on Fisher’s Exact Test for genomic data. We
propose to use BGN Homomorphic Encryption to encrypt the
data and sending the ciphertext to store in the cloud service
platform. We provide security, correctness and efficiency anal-
ysis of our privacy preserving Fisher’s Exact Test algorithm
on genomic data. From our experiments, we see that setting
certain parameters will assist us in optimizing computation
time. We conclude that using the BGN cryptosystem with the
Fisher’s Exact Test is secure, practical, and efficient.
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